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Nuclear Magnetic Resonance in Solid Helium-3* 
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Nuclear magnetic resonance experiments have been performed in solid He3 at constant molar volumes in 
the a and /3 phases at various magnetic fields and temperatures by the spin-echo method. The self-diffusion 
coefficient D as well as the relaxation times T\ and T% have been determined. D is observed to obey the 
Arrhenius equation as the temperature is lowered in the a phase, but at a low enough temperature it becomes 
temperature independent and depends only on the density. The activation energy for diffusion correlates 
well with that determined from specific heat measurements. At high magnetic fields T\ and T2 are observed 
to obey the Bloembergen, Purcell, and Pound relationships characteristic of relaxation caused by diffusion. 
At low magnetic fields, T\ becomes temperature independent as the temperature is lowered, and is observed 
to depend on magnetic field as exp(H2/Ho2), implying that the relaxation is from Zeeman to exchange 
systems. Values of the exchange integral / are deduced from temperature-independent diffusion, field-
dependent relaxation, and rigid-lattice values of T2, and show fair agreement internally. No agreement can 
be obtained with values of / deduced from observations of departures from Curie's law, the values here 
reported being much smaller. 

I. INTRODUCTION 

SOLID He3, because of its great simplicity, offers, 
perhaps, a model solid which is particularly suitable 

for investigation by the techniques of nuclear magnetic 
resonance. Three1,2 simple, well-known, crystalline 
phases exist; He3 can be obtained essentially isotopically 
pure, and has a nuclear spin of f, hence no quadrupole 
moment. The solid is particularly compressible, and in 
common with He4, does not exist in equilibrium with 
the vapor. A pressure of ^ 3 0 atm is required to produce 
the solid. This solid, furthermore, has no molecular 
association, and He3, along with He4 has the lowest 
polarizability of any atom. The spin of J has the con­
sequence that the particles obey Fermi statistics, 
implies the existence of an exchange integral, and also 
makes possible the measurement of the self-diffusion 
coefficient, D. 

We report here the measurement of D in the a phase, 
the relaxation times T\ and T2, in both the a and fi 
phases, and some data on the nuclear susceptibility of 
the solid. We also use T± to determine the location of 
the a-p phase transition. The value of the exchange 
integral, / , is deduced from (a) T2 measurements, 
(b) T\ measurements as a function of magnetic field, 
and (c) temperature-independent D. The determination 
of J is carried out at a temperature range far above that 
at which departures from Curie's law have been ob­
served.3 Comparisons are made with other experimental 
determinations of the activation energy for diffusion, 
relaxation times 7\ and T2, and determinations, both 
theoretical and experimental, of / by other methods. 

* Portions of this work have been previously reported in Pro­
ceedings of the Second Symposium on Helium-3, 1960, Helium Three 
(Ohio State University Press, Columbus, 1960), p. 63. 

1 E. R. Grilly and R. L. Mills, Ann. Phvs. (New York) 8, 1 
(1959). 

2 A. F. Schuch and R. L. Mills, Phys. Rev. Letters 6, 596 (1961). 
3 E. D. Adams, H. Meyer, and W. M. Fairbank, in Proceedings 

of the Second Symposium on Helium-3, 1960, Helium Three (Ohio 
State University Press, Columbus, 1960), p. 57. 

The measurements reported here were carried out at 
several different, constant, molar volumes from 22.48 
cm3/mole to 18.36 cm3/mole, corresponding to pressures 
in the liquid at the freezing point of 69.2 and 204.5 
kg/cm2, respectively. The temperature ranged from the 
melting point of the solid, at most here 3.50°K, down 
to -0 .5°K. 

Two different relaxation mechanisms are found to 
contribute to the observed spin relaxation time. The 
first is identified as spin-lattice relaxation caused by 
the self-diffusion of the He3 atoms, and follows the re­
lations first elucidated by Bloembergen, Purcell, and 
Pound (BPP).4 The second is identified as temperature-
independent Zeeman-exchange relaxation, first dis­
cussed by Kronig and Bouwkamp,5 and later found to 
exist in the case of electron paramagnetic resonance in 
free radicals.6 The characteristic dependence of the 
temperature-independent relaxation time on magnetic 
field can be used to determine / . 

To is found to become temperature independent at 
low enough temperatures, as shown by Van Vleck.7 

The observed value of T2, though, is some orders of 
magnitude larger than calculated, due to exchange 
narrowing. The theory of Anderson and Weiss8 is used 
also to deduce the values of / . 

Since D is measured as a function of both density and 
temperature over a wider fractional range than in any 
other solid, it is informative to consider the behavior 
of D in the context of theories developed for more 
classical systems such as the alkali metals and even 
metallic lead.9 I t will be seen that exactly analogous 

4 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 
73, 679 (1948), hereafter referred to as BPP. 

5 R. de L. Kronig and C. J. Bouwkamp, Physica 5, 521 (1938). 
6 N. Bloembergen and S. Wang, Phys. Rev. 93, 72 (1954). 
7 J- H. Van Vleck, Phys. Rev. 74, 1168 (1948). 
8 P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 

(1953). 
9 For a review of recent work on pressure dependence of D and 

applicable theories, see article by D. Lazarus, in Advances in Solid 
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behavior obtains over a wide range of densities and 
temperatures. 

This experiment forms a continuation of previous 
work10 on liquid He3, using principally the same appa­
ratus and techniques. 

II. EXPERIMENTAL APPARATUS 

The apparatus used here was substantially the same 
as that used by GR, except for several modifications, 
which are described below. 

A. Sample Cell 

A sample cell was here made of nylon11 instead of the 
previously used cast araldite and is shown in Fig. 1. 
The advantages are: (1) readily machined, (2) with­
stands almost any predetermined design pressure (here 
chosen to be 335 atm), (3) withstands repeated plunging 
into liquid nitrogen from room temperature without 
cracking, (4) easily assembled; finger tight is sufficient 
to make a vacuum seal at room temperature, and the 
cell is thereafter pressure tight at 77°K to He gas at 
335 atm, as measured by a mass spectrometer leak 
detector. I t is also tight to supernuid helium. (5) Nylon 
is sufficiently strong so that the rf coil can be wound 
on the outside of the cell and still achieve a good filling 
factor. 

This type of cell, developed in cooperation with 
Garwin and Low,12 makes use of the differential thermal 
contraction13 between brass and nylon to achieve a seal 
that tightens with decreasing temperature. 

B. Electronics 

In order to measure T\ at various magnetic fields 
with the fixed tuned rf assembly then available, it was 
decided to employ the field-pulsing method. Accord­
ingly, the magnet regulator previously used by GR was 
replaced by one similar to that described by Patlach,14 

and differing mainly in the number of pass transistors 
used. The design was such that optimum transient 
response for step changes in the magnetic field was 
realized. I t took ~ 1 sec to decrease the field to an 
arbitrary predetermined value, and about 10 sec to 
return it from that value to the value at resonance. The 
procedure is described in detail in Sec. I I I . 

I t was soon found that, at low fields, the relaxation 
times dropped below the range of a few seconds. In 
view of the difficulties inherent in attempting to 
construct a magnet regulator with millisecond recovery 

COPPER 
FILLING TUBE 

fc7 

State Physics, edited by F. Seitz and D. Turnbull (Academic 
Press Inc., New York, 1960), Vol. 10, p. 71. 

10 R. L. Garwin and H. A. Reich, Phys. Rev. 115, 1478 (1959), 
hereafter referred to as GR. 

11 Nylon grade FM 101, the du Pont Company, Wilmington, 
Delaware. 

12 F. J. Low and H. E. Rorschach, Phys. Rev. 120, 1111 (1960). 
13 See Russel Scott, Cryogenic Engineering (D. Van Nostrand 

Company, Inc., Princeton, New Jersey, 1959), Chap. 10. 
14 A. M. Patlach, Electronics 33, 66 (1960). 

FIG. 1. Nylon-brass 
sample cell. Tightness is 
maintained at low tempera­
tures by virtue of differ­
ential thermal contraction. 
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times, a tuneable spin echo transmitter receiver was 
constructed. Since the frequency range was from ^ 5 . 2 
Mc/sec to ~1 .5 Mc/sec, untuned video techniques 
were used wherever possible. Since rapidity of tuning 
was also essential, an effort was made to reduce to a 
minimum the number of tuned circuits required. 

The transmitter consisted of: (a) a low-leakage rf 
gate, similar to that described by Blume,15 and dif­
fering only in that no tuned circuits were employed; 
(b) a General Radio 1330-A bridge oscillator, which was 
sufficiently stable and had low enough leakage so that 
no interference with the echoes resulted, and which 
drove the gate; (c) a 2:1 step-up pulse transformer, 
which coupled the gate output to the tuned circuit load 
whose coil surrounded the sample. The same timing 
chain used by GR was here used to drive the gate. 

The receiver consisted of a chain of three modified 
Hewlett-Packard 460-A broad-band amplifiers, which 
had their 200-12 input impedance matched to the sample 
coil by a Tektronix P-170-F cathode follower probe. 
The output of the amplifier chain is matched to the 
input of a Tektronix 535 oscilloscope by means of a 
tuned step-up transformer which has a gain of 10. The 
gain of the receiver before the oscilloscope is adjustable, 
and has a maximum value of 104, sufficient to see the 
thermal noise of the input circuit, and sufficient to give 
echo amplitudes larger than full scale on the oscillo­
scope. The recovery time of the receiver from the 
100-V transmitter pulse was ~ 5 0 ^usec. 

There are thus three tuning controls, which could 
very conveniently be tuned in the absence of a nuclear 
resonance signal. 

C. Gradient Shims 

In order to increase the resolution for the measure­
ment of D by the spin-echo method, it is necessary to 
increase the value of the magnetic field gradient to the 
maximum amount possible. This maximum is limited 
by receiver bandwidth, since as the gradient increases 

16 R. J. Blume, Rev. Sci. Instr. 32, 554 (1961). 
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the echo becomes narrower, and hence the spectral 
band occupied greater. Also, it is necessary that the 
transmitter pulse be short compared to the echo width.16 

Since it was desired also to change its value on occa­
sion, the gradient was produced by a pair of wedge-
shaped shims, of 5° included angle. Use of the shims at 
a field of 1611 G resulted in a gradient 21 G/cm, per­
pendicular to the magnetic field. The gradient was de­
termined by mapping the field with a proton resonance, 
and was checked by observing the shape of the echo, as 
in GR. Both methods gave the same result. 

III. PROCEDURE 

A. Blocked Capillary Method 

The method by which solid He8 of known density was 
produced will now be described by reference to Fig. 2, 
the phase diagram in the V-T plane. This diagram has 
been constructed from the data of Grilly and Mills1 by 
subtracting the volume change on melting from the 
molar volume along the melting curve. Corresponding 
points along the melting curve on the P-T plane can 
be constructed by noting the temperature at which 
solid of a given volume melts. The temperature at which 
liquid of the same volume freezes is established by the 
pressure in the liquid. These two temperatures are then 
laid off on the P-T phase boundary and establish the 
pressure in the solid along the solid melting line. The 
pressure in the solid at lower temperatures is as yet 
unmeasured, except for some partial data along the 
a-fi phase boundary. 

To form the solid at known density, the liquid was 
first compressed to the desired density, while moni-
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FIG. 2. Portion of the He3 phase diagram in the V-T plane near 
the a-/3 phase transition, o—solid a, •—solid /3, ©—mixed solid. 
A-B-C-D corresponds to freezing at constant volume, A-E-F to 
constant pressure. 

1 H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954). 

toring the temperature of the sample cell. A rise of 
several degrees due to the heat of compression and 
sudden introduction of hot gas established that the 
capillary was not blocked. The mercury level alarm, 
described by GR, was used to ensure that no mercury 
entered the capillary. The bath was then cooled to 
several millidegrees above the temperature correspond­
ing to the liquid freezing point, point A, At this time 
a pressure of ^ 1 mm Hg of He4 was in the isolation 
space, and in the space surrounding the sample cell. 
He3 liquid also filled the refrigerator, but was not 
pumped on. At this time, if desired, Tx data were taken 
to establish a reference point for normalizing solid sus­
ceptibility. Upon ascertaining that there was no solid 
present inadvertently, because of errors in pressure or 
temperature, the temperature was lowered as rapidly 
as possible to some temperature where 100% solid 
existed, point B. The presence of a small fractional 
amount of solid or liquid could easily be detected 
because of extremely large differences in time Tx between 
the solid and liquid. Due to the large latent heat of 
freezing, and the relatively small mass of He3 in the 
capillary, and the good thermal contact between the 
capillary and the bath, the capillary blocked im­
mediately upon the sudden drop in temperature, thus 
trapping a known molar volume in the sample cell. As 
long as the temperature was maintained thereafter 
below the melting point of the solid and the pressure 
maintained above the starting pressure, no slippage of 
material into the sample cell occurred. This was also 
ascertained by taking points both with decreasing and 
increasing temperatures, interlaced so that any change 
in molar volume with time would be apparent. None 
waŝ  ever observed. No data were taken in the mixed 
liquid-solid phase, as the density of the solid as well as 
its spatial distribution was unknown. This procedure 
is shown schematically in Fig. 2 as the line A BCD. 

If, on the other hand, slow cooling through the liquid-
solid phase boundary is allowed to occur, the molar 
volume of the resulting solid is represented by point E, 
and thereafter EF is the line followed. With inter­
mediate rates of cooling any volume between B and 
E could result. However, this situation is immediately 
apparent since Tx is a rapid function of molar volume, 
and can indeed serve to identify the volume. The molar 
volumes quoted are the maximum theoretical, and are 
estimated to be accurate to within ^ 0 . 1 % . Those places 
where the solid makes the transition from the a phase 
to the fi phase can be recognized from the course of Tx 

and T2 with temperature. Points C, D in Fig. 2. 
The data extend in pressure from 69.2 kg/cm2 to 

204.5 kg/cm2, or volumes of 22.48 to 18.36 cm3/mole. 
The lower density limit arises from difficulty in re­
producing the density due to the slow rate of cooling 
from the starting temperature, 1.79°K. The upper limit 
is one of convenience only, corresponding to a freezing 
point of 4.29°K. 
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B. Electronic 

Pulse Sequences 

The pulse sequence used to determine D was here the 
same as that used in GR, 90-180-180.16 This pulse se­
quence simultaneously determines D and T2 through 
the appearance of two spin echoes, which are related as 

h2/h1=A exp(- / / r 2 ) exp[ - (T
2GW/12)]. (1) 

Here h\, hi are the echo heights as determined from a 
photograph; t, the time between the echoes; 7, the 
gyromagnetic ratio; G, the field gradient; T2, the Bloch 
phenomenological transverse relaxation time; and D is 
the diffusion coefficient determined. A is a factor which 
describes the departure of the 180° pulse amplitude 
from ideality, and is left adjustable in a least-squares 
fit. 

The determination of Ti, the Bloch longitudinal re­
laxation time, required several different pulse sequences, 
since T\ ranged from ^0.03 sec to >1000 sec. The 
sequences used and the regions of applicability are: 
(a) 90-180—90-180, where the long dash refers to the 
variable time. This sequence is useful from the shortest 
times to ~10 sec. It requires that the sample be com­
pletely relaxed before the first 90 is applied. The equa­
tion which the data are found to obey is slightly more 
complicated than the simple exponential recovery, and 
is 

h2/h1=A-Bexp(-t/T1), 

where A and B are close to 1, but are left free in the 
least-squares fit. This allows for differences in timing 
between the first and second 90-180 sequence, (b) Since 
method (a) requires complete relaxation at the start, 
a method better suited for the longer relaxation times 
is to start from saturation. Here a sequence of 90-180 
pulses is applied in rapid succession, say 10/sec for 
1 sec, then a wait of variable time t, then one pair, 
90-180. The echo grows with / as 

* = 4 [ l - e x p ( - * / 7 \ ) ] . (2) 

Here A is proportional to the susceptibility x, and is 
later used in searching for departures from Curie's Law. 
Method (b) has the advantage that extremely long re­
laxation times may be measured from easily repro­
ducible starting conditions, namely, saturation, and 
also that the measurement need not be carried past one 
or two time constants, thus obtaining the maximum 
amount of information in a given time, since the spin 
system need never be allowed to recover completely. 
It has been used to measure relaxation times up to 
~1500 sec. Methods (c) and (d) are used for low accu­
racy determinations of short TVs. Method (c) consists 
of a repetition of the sequence 90-180 at such a rate 
hat the echo amplitude is 1 — e~hh of that for a long 
time, § being an adequate approximation. For times of 
the order 10 msec, an even simpler scheme (d) is used. 

It consists of examining the amplitude of the free in­
duction tail following a 90° pulse at a fixed time after 
the receiver has recovered. The spacing between 90's is 
then reduced until the echo amplitude is again f that 
at long times. No statistical reduction methods were 
used for methods (c) and (d). 

Tuning Procedure 

The fixed-tuned transmitter was adjusted to produce 
90° and 180° pulses by varying the plate voltage of the 
separate 90 and 180 generators, as discussed in GR. 
180°pulses were recognized by the absence of stimulated 
echoes, while 90's were obtained by maximizing the 
echo amplitude. 

The variable-frequency transmitter was adjusted by 
the same procedure, except that here the pulse width 
was varied, since the output voltage was fixed. Typical 
90° and 180° pulses were 7 and 15 /*sec long, respec­
tively, and were found not to require readjustment as 
the frequency was changed. 

The tuning procedure was best carried out after the 
solid was formed at some temperature just below the 
melting point, as here Ti was ~0.1 sec. Having chosen 
the frequency of operation, the oscillator was set to this 
frequency, and the receiver was tuned by leaking in a 
small signal. After this, the pulser was turned on and 
the magnetic field was set to resonance by observing 
the absence of beats between the leakage signal and the 
echo. 

C. Magnetic Field Dependence 

Two different procedures were used to investigate the 
magnetic field dependence of Th corresponding to the 
apparatus discussed in Sec. II. The first procedure, used 
with the fixed tuned transmitter and receiver was as 
follows: Starting at HTesy the sample was saturated. 
Immediately after saturation the magnet current was 
switched to the new (variable) value. It was allowed to 
sit there a variable time t, then switched back to Hrea. 
When a proton resonance field monitor indicated that 
HTes had been reached, an echo was produced and 
photographed. Since the time for the regulator to settle 
down was about 10 sec, this limited the minimum meas­
urable value of Tx to about 15 sec. This is the method 
used by Abragam and Proctor17 and by Pershan.18 

For shorter values of Tx the tuneable spin echo appa­
ratus was used, using the pulse sequences discussed in 
the previous section. 

The region of H investigated with the two methods 
was allowed to overlap, as a check on consistency. The 
values of Ti were identical to within experimental 
error, and hence are plotted without distinction as to 
method. 

17 A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958). 
18 P. S. Pershan, Phys. Rev. 117, 109 (1960). 
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D. Data Reduction 

The equations used to determine the values of D, Th 

and T2 have been discussed. The equations are non­
linear, hence the "differential correction method"19 is 
used, rather than to take the logarithm, and to fit 
straight lines, which would involve weighting the data 
in an unnatural way. This method assigns the same 
weight to each observational point, and also in the 
course of the calculation gives the error matrix, from 
which the statistical error in the calculated quantities 
is derived. The equation used is dX= {SAXX/(fi—p)&)112. 
Here bX is the statistical uncertainty in X, S is the sum 
of squares of the residuals, Axx is the minor of the co­
efficient of X in the error matrix, n is the number of 
data points, usually 9 or 12, p is the number of con­
stants determined, and A is the determinant of the 
error matrix. 

E. Minimum Detectable Diffusion Coefficient 

Since the echo heights are related in the 90-180-180 
sequence as given in Eq. (1), the minimum detectable 
value of D is determined by the value of T2, G, and the 
signal-to-noise ratio. G is experimentally accessible. 
The signal-to-noise ratio is also accessible through the 
expedient of working at as high a magnetic field as 
possible, which corresponded here to a frequency of 
5.22 Mc/sec. For everything else constant, S/N varies 
as H2. T2y though is given by nature, and has its own 
variation with temperature. For a given value of 7\>, 
then, how small a D can be observed ? This can be seen 
from the following consideration: At a time t~T2, the 
curve of h%/hi vs / will have the value 1/e in the 
absence of diffusion effects. If then D is to be observable, 
there must be some extra damping due to the second 
term. Suppose the extra damping amounts to 1%. Then 
l = 0.0l72G2Dminr2

3/12 determines the minimum value 
of D for a given T2. For the given value of G, 21 G/cm, 
and the S/N ratio, which was about 100, the minimum 

value of D, measured to about 50%, was ^10~ 8 cm2/sec. 
I t will be noted that as the temperature decreases, T2, 
as well as D, gets smaller, and consequently the accu­
racy of determining D decreases with decreasing 
temperature. 

IV. RESULTS AND DISCUSSION 

Diffusion Coefficient 

We present here in Fig. 3 the results of measurements 
of the diffusion coefficient in the a phase by the spin-
echo method. Observations were made from the melting 
point of the solid down ^ 0 . 5 °K, or to the temperature 
at which D became too small to measure because of 
decreasing T%, Table I lists the various quantities 
derived from Fig. 3, as well as the corresponding quan­
tities derived from relaxation time measurements in the 

TABLE I. Activation energy for diffusion and other derived 
data as a function of molar volume in solid He3. 

Vm 
(cm3 /mole) 

22.48 

22.05 
21.70 
21.10 
20.12 

19.75 
19.47 
19.32 

20.12 
19.47 
19.32 
18.82 
18.52 
18.36 

Notes 

All da ta* 
One run 
One run 
+ 2 pts 
4 p t s 

All d a t a 
b 

4 pts 

& pha 

a 

2 pts* 
2 pts<* 

IV 
(°K) 

7.82 ±0 .72 
8.06 ± 0 . 2 5 
6.69 ± 0 . 6 7 

7 .78±0 .27 
9 .13±0 .67 

11.7 ± 1 . 2 
13.6 
13.8 ± 0 . 1 
16.5 ± 1 . 2 
17.5 ± 0 . 6 
16.9 ± 1 . 1 

se, only 7\ and 

26.0 
22.4 
34.1 ± 0 . 4 
38.0 ± 1 . 0 
37 ± 0 . 4 

Do 
(cm2 /sec) 

X10" 5 

3.1 ± 2 . 0 
4.0 ± 0 . 7 
1.4 ± 5 0 % 

1.4 ± 2 0 % 
2.7 ± 6 0 % 
4.8 ± 7 0 % 
4.3 

7 ± 4 0 % 
7 ± 3 
5 ± 2 

T% are obser 

DmeU 
(cm2 /sec) 

X 1 0 - 8 

12.4 

10.2 
13.4 
12.5 
17 

14 
15 
15 

ved 

r , r i g i , | 
(msec) 

80 

62 
45 
29 
16 

<16 
d 

d 

15 
7.5 
8.2 
3.5 
2.6 
2.0 

FIG. 3. Log D vs l/T. 

a See discussion in text. 
b At this and smaller molar volumes, the a-fi phase transition is crossed. 
c From Goodkind and Fairbank Ti, see reference 29 in text. 
d At these molar volumes Tz has not yet approached a constant value 

before the a-/9 transition occurs. 

P phase. We note here several qualitative observations 
regarding the data: 

(a) At "high"temperatures, i.e., near the melting 
point, D appears to obey an Arrhenius equation of the 
form D=D0 exp(-W/kT). 

(b) At sufficiently low temperatures, D becomes con­
stant, independent of temperature, and depends only 
on density. This type of behavior has been postulated 
previously only for the case of rotational tunneling of 
certain organic molecules.20 

(c) The value of Z>m©it is, within the accuracy of the 
experiment, constant and independent of temperature. 
Rice et at. have made a dynamical theory of diffusion 
in crystals, one of the results of which is that in the 
limit of low pressures there exists a law of corresponding 

19 See, for example, K. L. Nielsen, Methods in Numerical 
Analysis (The Macmillan Company, New York, 1956). 

20 E. O. Stejskal and H. S. Gutowsky, J. Chem. Phys. 28, 388 
(1957). 
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states of the form InD « Tm/T, which accounts for this 
observation.21 

(d) W, the activation energy for diffusion, increases 
approximately linearly with increasing density and 
melting temperature. See Figs. 4 and 5. 

(e) The value of D0, the intercept at infinite tem­
perature, is a constant, with the value Do—3X10~5 

cm2/sec, which is approximately the value of D in the 
liquid along the melting line. 

Since the Arrhenius equation is apparently obeyed, if 
over a limited region, we may analyze the curves of 
Fig. 3 by the method of least squares to derive best 
values of the constants D0 and W. The result of such a 
computation is shown in Table I. In evaluating the 
statistical errors here, the contribution to x2 from the 
error in each individual point has been neglected, as 
this is small compared to the contribution due to de­
parture from a straight line. The data points from all 

i 1 r 

1? 20 21 22 23 24 25 
V, cm3/mot 

FIG. 4. Activation energy for diffusion W vs molar volume. 
Curve ,4— Swenson-Heltemes22, Curve B—This work. The boxes 
give the points of Goodkind and Fairbank.29 

available runs have been included for each reduction. 
There was a slight nonreproducibility of density from 
run to run, which condition is most difficult at the 
highest molar volume and there amounted to ^ 0 . 5 % . 
At smaller molar volumes this error became negligible, 
but here another source of error limited the accuracy of 
determination of W, in that the temperature range over 
which the a phase exists is sharply reduced, and hence 
there are fewer points. 

At the highest volume the curvature at the bottom 
makes uncertain exactly where to cut off the data. The 
results of a one run reduction are given, and the effect 
of including two points at the lower temperature are 
also apparent. The increased error due to combining 
runs is seen to be of the order of the uncertainty of W 
from separate runs. The adopted value in each case is 

21 R. A. Hultsch and R. G. Barnes, Phys. Rev. 125, 1832 (1962). 

™\ 1 1 r 

: f 
w °K j/y 

I Swenson-Heltemesy^ Y 

This work 

6h ** H 

2 r "i 

01 1 I I I 
0 1 2 3 

FIG. 5. Activation energy for diffusion W vs melting temperature. 

the result of including all data in each run, and is the 
first one given. 

In the f3 phase, the value of W is deduced from 2 \ 
measurements. Since at the lowrer molar volumes, the 
transition occurred at rather low temperatures, there 
are in some cases only two data points available from 
which W may be determined. These are noted. 

On Fig. 4 we have also plotted the activation energy 
for the formation of vacancies, as determined by 
specific-heat measurements,22 also at constant volume. 
I t is to be noted that there is some discrepancy between 
the two sets of measurements, which tends to vanish 
at the highest density, with W as determined from D 
smaller than W as determined from the excess contribu­
tion to specific heat. The molar volumes quoted in 
Table I are the largest theoretically available ones,1 

and hence if a systematic error existed in our molar 
volumes, the discrepancy would be worse. We, there­
fore, regard the discrepancy as physically real, and 
attempt to explain it in terms of mechanisms of dif­
fusion developed for metals. 

I t was not until observation of marker movements 
(Kirkendall effect), and excess contributions to ex-. 
pansion coefficients and specific heats that the mecha­
nism for diffusion in metallic crystals was uniquely 
established as due to vacancies and interstitials.9 The 
measured activation energy, W, is generally thought of 
as consisting of the sum of two parts : W=Ev-\-Em, 
where Ev is the energy required to form a vacancy, and 
Em is the additional energy required to move the 
vacancy (or interstitial) across some internal potential 
barrier.23 The excess specific heat near the melting point 

22 E. C. Heltemes and C. A. Swenson, Phys. Rev. Letters 7, 
363 (1961). 

23 G. J. Dienes, Phys. Rev. 89, 1851 (1953). 
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of AgBr has been analyzed24 as due to the energy Ea. 
The agreement with the number of vacancies deduced 
from electrical measurements of mobility was con­
sidered good. Heltemes and Swenson have measured 
Ev as a function of density, and a measurement of D 
should give Ev+Em, both positive quantities. Since W 
was observed here to be even smaller than Ev, we 
conclude that there is another mechanism of diffusion 
operating in parallel with the usual vacancy mechanism, 
which gives rise to a lower activation energy. From 
observation (b) we also conclude that a vacancy 
mechanism alone is insufficient to explain D, because 
the number of vacancies must decrease exponentially 
with decreasing temperature, assuming they obey 
Boltzmann statistics. The most probable remaining 
mechanism then, is the one identified28,26 as "ring of 
two" or direct exchange, or translational tunneling. 

One cannot carry the analogy between the behavior 
of solid He3 and solid metals too far: He3 is a solid where 
quantum effects are very large. In particular, the 
amplitude of zero-point motion has been estimated27,28 

to be about 0.3 a, where a is the interatomic spacing. 
Since the exchange frequency which results from this 
large overlap can be thought of as the time required for 
two atoms to change places, we may attempt to 
identify the characteristic jump frequency for diffusive 
motion with the exchange frequency. We do this for the 
molar volume 22.48 cm3/mole, where we may expect 
the largest effects due to exchange. Using Z?=(r2)/6rc, 
D=3X 10~8 cm2/sec, and r=3.64X10-8 cm, we obtain 
/=T c-i=1.36X108 cps, or /=6.52X10-3 °K, which is 
close to the value predicted in references 27 and 28. 
This frequency may be compared to the frequency of 
zero-point motion, obtained from the Debye frequency 
appropriate to a 6 of 21.1 °K,22 here a factor 3200 larger. 
We are thus led to characterize the solid as one in which 
an atom is not well localized, undergoes large amplitude 
vibrations, and once every 3200 vibrations (on the 
average) changes places with a neighbor. Since the 
atoms are here labeled by their spins, it is physically 
indistinguishable if two atoms actually change places, 
or if their spins mutually exchange, in defining diffusive 
jumps. We note further that this mechanism would be 
temperature independent, as is observed. 

As the density is increased, the temperature-inde­
pendent part of D gets smaller, which implies that the 
exchange integral is also getting smaller. Unfortunately, 
this part of D soon gets below the limit of observability, 
due to decrease of T% with increasing density. Pre­
sumably, if a larger gradient could be used, the tempera­
ture-independent part of D would then be observable 
at higher densities. 

24 R. W. Christy and A. W. Lawson, J. Chem. Phys. 19, 517 
(1951). 

25 H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942). 
26 C. Zener, Acta Cryst. 3, 346 (1960). 
27 N. Bernardes and H. Primakoff, Phys. Rev. 119, 968 (1960). 
28 E. M. Saunders, Phys. Rev. 126, 1724 (1962). 

As the density is increased then, the exchange con­
tribution to the diffusion coefficient gets smaller, and 
hence the observed activation energy approaches more 
closely the value deduced from specific-heat measure­
ments, as shown in Figs. 4 and 5. 

Value of Do 

Theoretical estimates have been made of the value 
of D0i the "frequency factor"23 in the Arrhenius equa­
tion. Since these arguments rely on statistical thermo­
dynamics, they do not depend on any particular 
metallic property of the substance, and may be applied 
to solid He3. Dienes writes for D, 

D=z [_yv\Ze&SIR-^e-(Ev+Em)IT 

where the expression in the brackets is D0, and where 
7 = | for He3 in the a phase (bcc), *>=the vibrational 
frequency of an atom, here taken to be the Debye fre­
quency, X the jump distance, and AS the entropy of 
activation. Ev and Em are defined above. AS is composed 
of the sum of three parts: (1) A contribution due to 
thermal expansion of the lattice; (2) a contribution due 
to altered vibrational frequencies around a vacancy; 
and (3) the contribution due to altered frequencies 
around a saddle point. Since the measurements here are 
taken at constant density, contribution (1) vanishes, 
and we need consider only (2) and (3). Choosing the 
constants as above, pD = kd/h=4AX10u cps, r2=1.33 
XlQr15 cm2, and D0=4X10-5 cm2/sec, we obtain 
eAs/a^o.051 or AS=-5 .9 eu. The theoretical calcu­
lated value of ASz is approximately —9 to —10 eu for 
most lattices with Griineisen's constant 7=2.24, so we 
see that the value of AS2 is ~ + 3 or 4 eu, consistent 
with the calculation of Mott and Gurney quoted in 
reference 23. 

Previous measurements of pressure variation of D 
have been mainly concerned with determining the pres­
sure dependence of W21 In these the experimental 
method was carefully arranged so that any possible 
variation in DQ was not observed. Theories of D0, on 
the other hand, have built into them the possibility of 
observing pressure variations. 

Figure 4 has plotted on it also the results of Goodkind 
and Fairbank29 on solid He3 obtained by means of free-
precession techniques. They determined the activation 
energy by observing Tx at a frequency of 30.4 Mc/sec. 
Since Goodkind and Fairbank took data as a function 
of pressure, they were able to evaluate the volume of 
activation, knowing dW/dP. Since this experiment was 
at constant volume, such a comparison is not possible, 
in the absence of knowledge of the compressibility and 
thermal expansion coefficient of the solid. 

4S« J ^ ^ T * a n d , W ' F
c 'Fairbank, Phys. Rev. Letters 4, 

458 (1960) and reference 3, p. 52, hereafter referred to as GF. 
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Relaxation Time Ti 

The spin relaxation time T\ is shown in Fig. 6, plotted 
vs T~l for various values of molar volume in both the 
a and 0 phases. The data here were again taken at 
#0= 1611 G. From the observation that Ti decays were 
always purely exponential, we conclude that spin 
diffusion and relaxation by paramagnetic impurities 
were not important.30 

It was further noted that Tx was independent of the 
gradient used (~21 and 1 G/cm). Hence no distinction 
is made in plotting. In the course of measuring Tx an 
attempt was also made to detect any possible shifts in 
the frequency of resonance due for example to bulk 
magnetization, or other possible cooperative effects. 
Since the magnet, at best, did not have a very small 
gradient, the accuracy was limited to ^ l / lO 4 . No shifts 
of resonant frequency this large were detected, using a 
proton resonance as the field monitor. 

Observations concerning Tx are as follows: 

(1) In the a phase, near the melting point Tx shows 
behavior typical of relaxation to the lattice caused by 
diffusion. As the temperature is lowered Ti decreases, 
sometimes going through a minimum, depending on the 
density. The slope is expected to be asymptotic to the 
activation energy for diffusion. The actual slopes in the 
a phase are slightly less, because the solid melts, in 
most cases, before a straight line is found. The ft phase 
is always well on the long correlation time side of the 
curve, so that a straight line is found from which the 
activation energies are deduced. 

(2) For some values of the density in the a and 0 
phases T\ becomes constant as the temperature is 
lowered down to the lowest temperature of 0.5 °K. This 
behavior is identified with a competing relaxation 
mechanism, Zeeman exchange, and here Tx depends on 
the value of Ho. 

(3) For some densities there is a discontinuous jump 
in Tx and the activation energy, which serve to locate 
the a-fl phase transition. Indeed, in some narrow tem­
perature range mixtures of a and 0 can be identified by 
the appearance of nonexponential recovery. These can 
be analyzed as the sum of two exponentials to show the 
relative fractions of a and /?, as well as the respective 
ZYs. The data are not used, however, because a co­
existing mixture of a and 0 has different density for each 
component, and hence cannot be plotted on the same 
constant density curve. There is, at most densities, an 
accompanying discontinuous change in T2. Further 
discussion of the a-0 phase transition is found below. 

(4) At the melting point it is observed that at the 
frequency 5.224 Mc/sec, the a phase is always on the 
short correlation time side and the ft phase on the long 
correlation time side of the relaxation time curve. 

(5) We further note that T\ in the a phase near the 
melting point shows a monotonic decrease as the 

» W. E. Blumberg, Phys. Rev. 119, 79 (1960). 
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FIG. 6. Relaxation time T\ vs 1/T, showing transition to /? 
phase in curves D, E, G} and H. 

density is increased, and can serve to identify which of 
two closely spaced runs has the higher density. This 
observation is used in conjunction with the runs at 
19.47 and 19.32 cm3/niole. 

The theory of BPP, first used to explain spin-lattice 
relaxation caused by self-diffusion in a liquid was later 
modified by Torrey31 to account for relaxation in solids 
where there is a fixed jump distance to nearest-neighbor 
sites. Holcomb and Norberg32 have investigated relaxa­
tion in alkali metals, and have shown that the partial 
contribution to the relaxation rate caused by the in­
dependently measured diffusion coefficient obeys Tor-
rey's equation. In our case there are no conduction 
electrons, so matters are simpler. 

Torrey's Eq. (86) predicts the variation of T\ with 
temperature and magnetic field through 

r r x = ( 8 f / 5 ) Y * V ( / + l ) ( » / ^ ) * ( W = ^ . (3) 

Here T\ is the relaxation time; », the number density; 
k=0.76293, a constant which depends on the lattice 
type; / is the nearest-neighbor (jump) distance; and 
co is the resonant frequency. yp{k,y) is a tabulated func­
tion which contains the variation due to temperature 
through y=^o)Tc. The correlation time rc is to be 
identified with the mean time between jumps, and 
varies with T as TC—TQ exp(W/T). The function \f/ has 
a maximum value, corresponding to optimum corre­
lation time for relaxation at ;y=0.5922, where 
^mai= 0.28955. We see that the only unknown constant 
is ro. 

Torrey's equation should be most useful in the 
vicinity of the minimum, where Tx is most sensitive to 
the exact nature of the diffusion process. Far from the 

31 H. C. Torrey, Phys. Rev. 92, 962 (1953); 96, 690 (1954). 
32 D. F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074 

(1955). 
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FIG. 7. Relaxation time 2\ vs 1/T for F = 20.12 cm3/mole, at 
30.4 Mc/sec (Curve A) and 5.224 Mc/sec (Curve B). The curves 
are calculated using BPP theory, as explained in the text. 

minimum, the exact shape does not depend on the 
details of the process, and Torrey's equation assumes 
the same asymptotic form as the BPP theory. 

Since Torrey's theory also contains the frequency 
dependence, we seek to compare the theory with experi­
ments for which data are available at differing fre­
quencies. Fortunately, Goodkind and Fairbank29 have 
presented a relaxation curve at a volume very close to 
one at which we worked, V= 20.12 cm3/mole. The data 
are shown in Fig. 7. Since the GF data have the quali­
tative appearance we seek, we attempt to fit the Torrey 
curve to their data first. Since the activation energy of 
13.8°K is well determined, we regard it as a fixed con­
stant, and we have available at our disposal only the 
value of ro, which is chosen to make the minimum in T\ 
occur at T'1 = 0.455 °K~1. We then calculate Kh and 
obtain its theoretical value, 5.88, compared to an ob­
served value of 8.63. We, therefore, choose to regard 
this constant also as having an adjustable value, to be 
determined from the experimental data. We will, how­
ever, retain the dependence on co in the form given. If, 
then, the Torrey calculation is carried out, it is found 
that the asymptotic value at long correlation times 
(low temperatures) has the appropriate slope, but is 
too small in absolute value by ^ 4 0 % , and the corre­
sponding curve obtained by inserting the value of w 
appropriate for this experiment shows a correspondingly 
poor fit. If attempts are made to fit the Torrey curve to 
the straight line portion by adjusting K\ equally bad 

agreement is obtained. The GF data appear to have a 
sharper minimum than that expected from Eq. (3). 

We therefore return to the BPP formulation of re­
laxation due to diffusion, as perhaps the lattice structure 
of solid He3 is "loose'' enough so that a theory developed 
for liquids may be applicable. 

The BPP equation for relaxation has the form 

- = — ( + — — - J , W 
Ti w \l+x2 1+(2*)V 

where X=COT and r varies with temperature as before. 
This expression has a maximum at #=V2/2. If we now 
choose Ki and r0 so that the curve passes through the 
same minimum point, the low-temperature asymptote 
then lies ^ 2 5 % below the experimental data. We see 
that the agreement is better but still falls wide of the 
data. We may choose a different method of fitting the 
curve, namely, fix the temperature of the minimum to 
agree with the data and fix the asymptotic value to 
pass through the data points by adjusting K2. The value 
of Timin will then be determined. This is the procedure 
used to construct curves A and B on Fig. 7. The values 
of the parameters determined by this method are: 
iT2=6.35X108 sec-2; JF=13.8°K; and To=6.94X10"12 

sec. We may compare the value of r0 thus derived with 
the value of r0 derived from diffusion, using D= <V2)/6rc, 
which for this density is ro=5.32X10~12 sec. The agree­
ment is considered satisfactory in view of the uncertain­
ties caused by the possible two mechanisms of diffusion. 
I t is seen that the GF data appear to have a sharper 
minimum even than BPP theory would predict. Inci­
dentally, if we consider only the data near the minimum, 
and disregard the asymptotic value, there is no experi­
mental basis for distinguishing between the BPP and 
Torrey theories—both fit equally well. 

Although it has been shown33-34 that the theory of 
BPP is in error, in that the second term of Eq. (4) 
should be twice as large, and that Torrey's theory 
suffers from the same error in deriving Eq. (3), calcu­
lation shows that the shape of the curves derived from 
the two theories are independent of the exact coefficient 
used for the double frequency term, to better than 1%. 
The only difference which appears is that the value of 
K2 is changed by about 30%, in such a way as to be in 
closer agreement with the experimental value. The 
position of the minimum is shifted slightly, but 
insignificantly. 

The value of 7 \ m i n in this experiment, lower than 
predicted from Eqs. (3) and (4), the fact that it occurs 
at a lower temperature, and the temperature inde­
pendence of Th all are caused by the added relaxation 
due to exchange which becomes operative at low enough 

33 A. Abragam, The Principles of Nuclear Magnetism (Oxford 
University Press, New York, 1961), pp. 300 and 462. 

34 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954), 
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temperatures. However, qualitative agreement at high 
temperatures obtains with BPP theory. 

Field Dependence of 7\ 

In order to explain the qualitative disagreement 
between GF and these T\ measurements, it is necessary 
to discuss the spin Hamiltonian appropriate to solid 
He3, which we take to be in the form67 

3C — JCQ T" 5Cex"T~5Cdi] (5) 

Here 5C0 is the Zeeman energy in the external field 

Ko=yETEiI>Zj, (6) 

and the exchange and dipole energy terms are given by 

3Cex= zL k>i Jikh ' Iky (7) 

Kdip = y*Zk>i lrik-
zh>Ik-3rik-

5(rik-h)(rik-Ik), (8) 

which differs from the Hamiltonian customarily used 
to analyze paramagnetic resonance experiments only in 
that the spins here are nuclear rather than electron 
spins. 

Since the magnetic moments are ^-10~3 as large for 
nuclei than for electrons, we may expect that at easily 
attainable fields, 

5CeX^5C0. (9) 

And if the exchange is at all large, we may also expect 
that 

•JCexxjXJCdip (10) 

Since 3Cex commutes with 3C0, and 3CdiP weakly couples 
the two, we may assign separate spin temperatures to 
the Zeeman and exchange systems in the region where 
r i » r 2 . The total system may then be described by the 
diagram of Fig. 8. 

In the spin-echo experiment, the measured quantity, 
Th is characteristic of the recovery of Mz from satura­
tion, which can occur through two processes: 
(1) Zeeman-lattice relaxation, characterized by a time 
rZL, and (2) Zeeman-exchange relaxation, characterized 
by a time TZE. The Zeeman-lattice relaxation is tem­
perature dependent, through the coupling introduced 
by the random fluctuations of r due to diffusive motion, 
and is given in Eq. (4). TZL varies asymptotically for 
large H as H2. The Zeeman-exchange relaxation does 
not depend on temperature, because the coupling arises 
from that part of the Hamiltonian which commutes 

FIG. 8. Schematic show­
ing the various relaxation 
times and hath tempera­
tures. 
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FIG. 9. Log T\ vs H2, at various temperatures. The straight line 
portion is temperature independent. At high fields, the curves 
depend on H as H2. 

with 3€0+3Cex. TZE varies with H as 

TZE=T2exp(H2/2Hr), (11) 

where Hi is some "local" field.34 

I t might be assumed that the observed 2\ is related 
to r Z E and TZL through an equation characteristic of 
independent rate processes, 

1/T1=1/TZE+1/TZL. 

But such an equation would predict a temperature-
independent relaxation at both high and low tempera­
tures, contrary to the observed shape shown in Fig. 7. 
In addition, the detailed shape of the Tx vs H1 curve 
shown in Fig. 9 in the region where both terms have 
comparable magnitudes is not reproduced. 

The mechanism by which the Zeeman energy relaxes 
toward the exchange bath was first given on a classical 
basis by Kronig and Bouwkamp,5 who first predicted 
the variation exp(H2/Hi2). This result was obtained 
by considering the scalar part of the dipole interaction, 
and since the exchange interaction is also a scalar, the 
effects are inseparable. The local field may thus be con­
sidered to arise from two sources, dipole-dipole and 
exchange, where it is anticipated that the exchange field 
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will be very much larger than the dipole field of a few 
gauss. 

The theory was later extended on a quantum-me­
chanical basis by Kubo and Tomita34 and Yokota.35 

These theories were used by Bloembergen and Wang636 

to explain the anomalous Jinewidths found in para­
magnetic salts. 

In Fig. 9 we plot the observed Tx vs H2, for several 
different values of the temperature, for the constant 
volumes of 18.82 and 18.36 cm3/mole, entirely within 
the P phase. The region in which the relaxation time T\ 
is temperature independent is clearly apparent, as is the 
region where Ti^H2 and depends on temperature 
through Eq. (4). The slope of the straight line in Fig. 9 
may be used to deduce the value of Hh which is to be 
identified with a fictitious exchange magnetic field 
through Hex=J/y. The values of the exchange field 
are thus determined to be 208 and 142 G, corresponding 
respectively to the molar volumes above. The smallest 
field at which data were taken was ^500 G; these data 
confirm the expectation of Eq. (9). The corresponding 
exchange frequencies are 0.68 Mc/sec and 0.46 Mc/sec, 
which are somewhat smaller than the values deduced 
in Table II. It is also seen that the intercept at H=0 
corresponds fairly well with the observed value of Ti. 

Following the methods of reference 34, Hartmann37 

has derived an exact expression for the relaxation rate 
\/T\ valid for any combination of resonant frequency, 
diffusive jump time, and exchange frequency. This 
derivation treats the diffusion-determined properties 
in the same manner as BPP, and contains the specific 
properties of the lattice only in the coefficient of the 
double frequency term. 

Hartmann finds (tentatively) 

i/Tx^Kz Re{W(x+iy)+2aW(2ax+iy)}, (12) 

where z=x+iy and 

W(z) = e~Al+-^-f e~t2dt\y (13) 

and where x=a)/V2o)e and y= l/v2wer. The constant a 
depends on the lattice type, and for a bcc lattice 
Hartmann finds the value 0.837. Equation (12) has the 
proper asymptotic behavior in the regions where either 
exchange or diffusion predominate in causing relaxation. 
The ratio of the relaxation time at the minimum to 
temperature independent relaxation time serves to 
uniquely determine the parameter x} and hence coe. A 
comparison of the curves in Hartmann's paper with our 
experimental data yields, for a— 1, x= 1.46, from which 
we determine 7=5.1X106 cps. This value is to be 
compared to the value J=7.8X106 cps for this density 
as derived from the rigid lattice value of Ti (see below). 

35 M. Yokota, J. Phys. Soc. Japan 10, 762 (1955). 
36 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, 

Phys. Rev. 114, 445 (1959). 
37 S. R. Hartmann (to be published). 
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The agreement is considered satisfactory. Goodkind 
and Fairbank29 have reported, for a molar volume of 
20.12, that the spin relaxation time at —0.1°K was 
about 2400 sec. Assuming then, that Txcc exp(H2/2Hi2), 
we may calculate the temperature-independent value 
of Ti expected at 30.4 Mc/sec. This value is — lO^sec. 
However, from examination of Fig. 6 (Curve E) it is 
apparent that at 0.1 °K the solid is in the p phase, and 
hence no comparison is possible with solid in the a phase. 

We also note that the tentative hypothesis advanced 
previously in reference 3 (p. 63) that the temperature 
independent relaxation was caused by quantum 
tunneling, (independent of magnetic field) is erroneous. 

The same effect which causes the BPP and Torrey 
theories to be insensitive to the exact value of the co­
efficient of the double-frequency term operates here, 
and the shape of the curves of Eq. (12) are little 
affected by choice of a. We have, therefore, chosen 
a= 1, consistent with the choice in Eq. (4). The choice 
of a does affect the value of x in Eq. (12), and hence the 
deduced value of ««. The difference, though, amounts 
to at most 10%. Equation (12) can also be used to 
reproduce the field-dependent curves of Fig. 9, by 
choosing only r0. The slope of the straight line portion 
is found to be w2/2coe

2, and hence determines coe simply, 
notwithstanding the fact that there are two terms in 
Eq. (12). The intercept is experimentally determined, 
and is thus independent of any assumptions used to 
derive Eq. (11). The only remaining parameter is y, 
which depends on the temperature in a known manner. 
A calculated family of curves of Tx vs H2 is presented 
in Hartmann's paper. 

IOOO r — i — i — i — i — I — i — i — i — i — | — i — i — r 
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1~\ °K~' 
FIG. 10. Log T% vs 1/T, showing the discontinuous change 

from a to p, and the rigid-lattice values. 
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Another observation of interest was the fact that the 
T\ relaxation curves were always accurately exponential, 
even in the region where H~H^ as in the 0 phase. 
This implies that the temperature of the exchange bath 
does not change during the relaxation process. This, in 
turn, may arise in two ways: Either the exchange 
specific heat is very high, or the exchange-lattice re­
laxation time TEL is very short, say of order 1/10 of 
the shortest Tx observed (which was ~ 0 . 1 sec), or less. 

The specific heats of the Zeeman and exchange 
systems have been given6 as 

Cz=CH*Tz~\ (14) 

Since we operate at # e x « Z 7 , we are led to conclude 
that T E L must be very short, and indeed, since T2 is 
here ~0 .01 sec, J T E L ~ ^ 2 , in this range of temperature 
and magnetic field, in accord with the predictions of 
reference 34. 

Garwin and Landesman,38 in extending the range of 
temperature downward, have discovered another, long, 
relaxation time, involved in the approach to equilibrium 
of the Zeeman system. This relaxation time can be 
much longer than TZE and they consequently conclude 
that the exchange specific heat is much larger than that 
given by Eq. (15). This experiment did not detect any 
such effects in the range of parameters investigated, 
although the interpretation of reference 38 is not 
excluded. 

Relaxation Time T2 

We present the data of transverse relaxation time T2 

in Fig. 10, plotted in the same manner as the Tx data. 
We do not make use of the temperature-dependent 
part, except for some qualitative observations. The 
temperature-independent part is discussed in terms of 
the Van Vleck second-moment theory for a rigid lattice, 
extended by Anderson and Weiss for the case of ex­
change narrowing. At high temperatures it is found that 
T2 is of the exponentially activated form, as is to be 
expected from the BPP theory of motional narrowing. 
In the a phase, Tx—T2 near the melting point. But 
since the expression for T2 is analytically awkward, we 
do not attempt to calculate T2 in this region. I t is ob­
served though, that T2 decays are always exponential, 
giving evidence for Lorentzian line shape instead of 
Gaussian. The relation between T2 decays and line 
shape measurements has been discussed at length by 
Lowe and Norberg.39 

At some low enough temperature, T2 no longer shows 
the effects of motional narrowing and becomes tem-

38 R. L. Garwin and A. Landesman, Proceedings of the Eighth 
International Conference on Low-Temperature Physics, London, 
1962 (to be published). This relaxation time has been identified to 
be TEL and is presumably the cause of the large discrepancies in 
/ between the present work and those given in reference 3. 

3 9 1 . J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957). 

perature independent. In such a case, we may use the 
Van Vleck calculation of the second moment7 to find 
the expected value of T2. 

Van Vleck gives, for a simple cubic lattice, powdered, 

<Aco2>av= ( 3 / 5 ) 7 ^ 2 / ( / + l ) E l A 6 . (16) 

We assume, in view of the approximations already made 
in deriving this expression, that the corresponding line-
width for the case of bcc and hep lattices may be ob­
tained by just performing the proper lattice sum. We 
use, therefore, X)r~6= 29.06 a - 6 for bcc where a is the 
cell edge, and X>~6= 14.45 a~6 for hep, where here a is 
the nearest-neighbor distance. Inserting the proper 
values of the constants, we obtain 

r 2
/ =2.102Xl0~ 6 Vsecbcc , 

r 2 ' =2 .980X10- 6 Vsechcp . 

Here we have identified l/2Y=(Aa>2)av
1/2, consistent 

with Lorentzian line shape. V is the molar volume. 
Anderson and Weiss8 have calculated the second and 

fourth moments of strongly exchanged narrowed lines 
and, by comparing the expressions with the correspond­
ing ones of Van Vleck, have derived 

«.*= (8.48/3) ( / / * )* / ( /+1 ) , (17) 
and 

Aco = Wp2/a>e= (Aw2)av/W (18) 

Combining these, we obtain 

/ = (r20oba/1.26(r2
/)caic2(sec-1). (19) 

The observed T2 decay consists of two parts: (l/7Y)obs 
= (1 /7Y)+1 /7Y BPP have written \Trl as the 
amount to be subtracted from 1/Ti to obtain 1/7Y, 
but this holds only where the line shape is Gaussian. 
We use the form appropriate to Lorentzian lines. 

Table I I lists the value of T2 observed, T2 as ob­
tained above, the rigid lattice value of ZY, and the 
derived value of J, in units of cps and millidegrees. T2 

TABLE II. Value of exchange integral / calculated from rigid 
lattice value of T2 and theory of Anderson and Weiss (See 
reference 8). 

V 
n3/mole) 

22.48 
22.05 
21.70 
21.10 
20.12 

20.12 
19.47 
19.32 
18.82 
18.52 
18.36 

T% obs 
(msec) 

80 
62 
45 
29 
16 

15 
7.5 
8.2 
3.5 
2.6 
2.0 

TV obs 
(msec) 

?V calc 
(msec) 

a-phase bcc 
508 
318 
126 
48.0 
17.6 

0.047 
0.046 
0.045 
0.044 
0.042 

0-phase hep 
0.060 
0.058 
0.058 
0.056 
0.055 
0.055 

/ 
(cps) 

1.8X108 

1.2X108 

4.8X107 

1.9X107 

7.8X106 

3.3X106 

1.8X106 

2.0X106 

8.8X105 

6.8X105 

5.3 X105 

J 
(°K) 

X10"3 

8.7 
5.6 
2.3 
0.93 
0.38 

0.16 
0.085 
0.094 
0.042 
0.032 
0.025 
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and T2 are identical in the $ phase because of the large 
value of T\. A source of error at the low densities, par-

appeared as a nonexponential T\ recovery. At the same 
density and temperature, T2 did not show any peculiar 
behavior in the mixed phase. This could be due to two 
effects: (a) T2 is not much different in the a and /? 
phases, or (b) only the longest T2 is seen, due to the 
possibiiy small admixture of ft phase. For these reasons, 
the point at V= 21.10 is considered less well established 
than the rest. 

The close equality of T2 in the two phases has been 
observed, for example, at V= 20.12 cm3/mole, going 
from 16 to 15 msec as the phase transition is crossed. 
The change in T2 upon crossing the a-fi line increases 
rapidly as the density increases, and, extrapolating to 
low densities, it is not unlikely that the change in T2 

at V= 20.12 is extremely small. 
Adams, Meyer, and Fairbank3 have conjectured that 

the a-0 phase transition may bend sharply toward the 
melting line. As can be seen from Fig. 2, this conjecture 
is confirmed. We may also use this phase diagram to 
explain one of the qualitative features of the sus­
ceptibility vs temperature curves observed in refer­
ence 3. There it was observed that the curves of sus­
ceptibility vs 1/T fell into two groups: One which lies 
always below the Curie law value, and the other (at 
higher pressures) which went above the Curie law value 
before becoming constant. The latter curves were taken 
at pressures of 81.6, 95.3, and 112.2 atm. From our ex­
perience, the procedure there used, of slowly cooling 
through the solidification temperature, most likely 
leads to solidification at constant pressure, resulting in 
corresponding molar volumes of 20.86, 20.27, and 19.72 
cm3/rnole, respectively. From the phase diagram it is 
seen that at the temperature of ^0 .3 °K these points 
are well within the (3 phase, while the ones at lower 
pressure are in the a phase. 

Even if the solidification proceeded at constant 
volume, i.e., the capillary plugged immediately upon 
passing the freezing temperature, the two highest 
densities would certainly be in the $ phase, while that 
at 81.6 might perhaps be in the fi phase. 

Susceptibility 

Since the least-squares solution for the relaxation 
time T\ also gives as an incidental parameter the value 
of Mo at infinite time, as can be seen from Eq. (2), it 
becomes possible to determine accurately the relative 
molar susceptibility, provided the receiver gain is also 
known. A plot of echo height at infinite time, normalized 
to unity, and corrected for variation of T2 with tem­
perature, and extending from the liquid into the a, and 
thence the j3 phases, is shown in Fig. 11. This was 
measured at a frequency of 5.224 Mc/sec. I t is seen that 
X is approximately constant to within ^ 1 0 % across the 
solid-liquid phase transition, and across the a-fi phase 
transition. At the lowest temperature there appears to 
be a small decrease of x, but this is believed to be within 
experimental error. A run wTas also taken in the liquid 

ticularly, is the fact that T2 is not much smaller than the 
temperature-independent value of Z\, and hence T2 is 
derived from the subtraction of two almost equal 
quantities. 

From the calculated values of / , we see that in the 
low-density region of the a phase, at least, Hex2>HQ. 
This is one of the conditions for " 1 0 / 3 " broadening to 
be applicable, and, consequently, the values of / may 
here be too small by a factor 10/3. At the higher densi­
ties, though, H^X^HQ, so that the 10/3 effect gradually 
disappears. No corrections have been applied to / on 
this account. In the /3 phase, Hex^Ho, so that no 10/3 
correction is here applicable. We note that / is not a 
monotonic function of V in the /3 phase, as the values 
for V= 19.47 and 19.32 cm3/mole appear reversed. The 
apparently attractive explanation, that the densities 
were in fact reversed, is ruled out by examination of the 
T\ data in the a phase for the same two tuns , which 
shows that the densities are properly ordered. Both the 
T\ and T2 data show an anomaly, due presumably to 
nonmonotonic behavior of / . The reason for this be­
havior is not established. 

We may compare the value of T2 at 7=20.12 
cm3/mole here obtained at ZTo=1.6 kG with the value 
obtained by GF at 9.4 kG and the same volume in the 
a phase. Their smallest value is twice as large as ours, 
but. this may be due to their not extending the tempera­
ture range to low enough values. In addition, TV may 
be different for the two experiments because of the 10/3 
effect, which predicts that at lower fields T2 becomes 
smaller. 

The a-3 Phase Transition 

The location of the a-/3 phase transition on the V-T 
plane may be deduced from the temperature at which 
discontinuities appear in the T\ and T2 data for various 
isopycnals. The results of such an investigation are 
shown in Table I I I and plotted on Fig. 2. At the molar 
volume 21.10 cm3/mole, the available temperature 
resulted only in a mixture of a and j3 phases, which 

TABLE III . He3 a-0 phase boundaries for several different molar 
volumes, as determined from T\ and T% relaxation times. 

T, °K phase 

21.10 cm3/mole 
(Ti only) 

0.46 a+/3 
0.51 a+(3 
0.562 a-f/3 
0.635 a 

20.12 cm3/mole 
0.534 0 
0.562 a+p 
0.597 a-j-p 
0.635 a+(3 
0.674 a 

T, °K phase 

19.75 cm3/mole 
1.24 a 
1.70 a 

19.47 cm3/mole 
2.105 p 
2.24 a+p 
2.41 a 

19.32 cm3/mole 
2.19 p 
2.26 a+P 
2.38 a 
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T,°K 

FIG. 11. xl vs 1\ showing that Curie's law is obeyed in both the 
a and jS phases. The data are arbitrarily normalized to unity for 
the largest value of \T. 

as a function of pressure, at constant temperature. 
Again, within experimental accuracy, the echo height 
was proportional to density. 

Summary 

By means of the spin-echo technique, direct measure­
ments of self-diffusion, and spin relaxation times 7 \ and 
r 2 have been made in solid He3 at high temperatures. 
D shows behavior typical of vacancy diffusion at tem­
peratures in the a phase near the melting point. As the 
temperature is lowered, however, D becomes constant, 
independent of temperature. This behavior is character­
istic of quantum tunneling, and the characteristic fre­
quency associated with the tunneling is experimentally 
identified as the exchange frequency J/h. The activation 
energy for diffusion here determined agrees quite well 
with that determined from specific-heat measurements. 

Absolute values of D are predicted well by classical 
considerations based on the Debye model. 

At high magnetic fields, T\ and Ti display behavior 
typical of diffusion-caused relaxation, showing reasona­
ble agreement wTith BPP theory advanced for liquids. 
At low magnetic fields and low temperatures, T\ 
becomes temperature independent and depends on the 
magnetic field as exp(H2/2He^

2). The transition region 
between relaxation to the exchange bath and relaxation 
to the lattice is experimentally examined in detail, and 
a theory developed by Hartmann is used to derive the 
value of the exchange integral from the temperature and 
field dependence of T\. 

The theory of exchange narrowing developed by 
Anderson and Weiss is used to deduce the value of / 
from observations on temperature-independent Ti. The 
three methods used to evaluate J show reasonable 
internal agreement but disagree strongly with values of 
J deduced from susceptibility measurements at low 
temperatures. 

All the observations made are consistent with an 
exchange-lattice relaxation time of the order of Ti. 
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